首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15391篇
  免费   2715篇
  国内免费   837篇
化学   18149篇
晶体学   59篇
力学   28篇
综合类   14篇
数学   19篇
物理学   674篇
  2023年   245篇
  2022年   469篇
  2021年   645篇
  2020年   1237篇
  2019年   942篇
  2018年   762篇
  2017年   622篇
  2016年   1219篇
  2015年   1066篇
  2014年   1065篇
  2013年   1240篇
  2012年   950篇
  2011年   1022篇
  2010年   880篇
  2009年   908篇
  2008年   866篇
  2007年   786篇
  2006年   733篇
  2005年   662篇
  2004年   676篇
  2003年   541篇
  2002年   208篇
  2001年   105篇
  2000年   114篇
  1999年   81篇
  1998年   85篇
  1997年   150篇
  1996年   95篇
  1995年   110篇
  1994年   56篇
  1993年   36篇
  1992年   32篇
  1991年   33篇
  1990年   30篇
  1989年   19篇
  1988年   27篇
  1987年   21篇
  1986年   67篇
  1985年   14篇
  1984年   9篇
  1983年   7篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1975年   6篇
  1974年   6篇
  1973年   6篇
  1972年   11篇
  1970年   7篇
  1966年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Herein, the pivotal role of secondary nucleation in a crystallization-enhanced deracemization process is reported. During this process, complete and rapid deracemization of chiral conglomerate crystals of an isoindolinone is attained through fast microwave-assisted temperature cycling. A parametric study of the main factors that affect the occurrence of secondary nucleation in this process, namely agitation rate, suspension density, and solute supersaturation, confirms that an enhanced stereoselective secondary nucleation rate maximizes the deracemization rate. Analysis of the system during a single temperature cycle showed that, although stereoselective particle production during the crystallization stage leads to enantiomeric enrichment, undesired kinetic dissolution of smaller particles of the preferred enantiomer occurs during the dissolution step. Therefore, secondary nucleation is crucial for the enhancement of deracemization through temperature cycles and as such should be considered in further design and optimization of this process, as well as in other temperature cycling processes commonly applied in particle engineering.  相似文献   
92.
Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported the ruthenium complex ([Ru(DIP)2(sq)](PF6) (where DIP is 4,7-diphenyl-1,10-phenantroline and sq is semiquinonate) with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and under conditions that resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity than cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism.  相似文献   
93.
Novel functions emerge from novel structures. To develop efficient catalytic systems for challenging chemical transformations, chemists often seek inspirations from enzymatic catalysis. A large number of iron complexes supported by nitrogen-rich multidentate ligands have thus been developed to mimic oxo-transfer reactivity of dioxygen-activating metalloenzymes. Such efforts have significantly advanced our understanding of the reaction mechanisms by trapping key intermediates and elucidating their geometric and electronic properties. Critical to the success of this biomimetic approach is the design and synthesis of elaborate ligand systems to balance the thermodynamic stability, structural adaptability, and chemical reactivity. In this Concept article, representative design strategies for biomimetic atom-transfer chemistry are discussed from the perspectives of “ligand builders”. Emphasis is placed on how the primary coordination sphere is constructed, and how it can be elaborated further by rational design for desired functions.  相似文献   
94.
A short synthetic approach with broad scope to access five- to seven-membered cyclic sulfoximines in only two to three steps from readily available thiophenols is reported. Thus, simple building blocks were converted to complex molecular structures by a sequence of S-alkylation and one-pot sulfoximine formation, followed by intramolecular cyclization. Seventeen structurally diverse cyclic sulfoximines were prepared in high overall yields. In vitro evaluation of these underrepresented, three-dimensional, cyclic sulfoximines with respect to properties relevant to medicinal chemistry did not reveal any intrinsic flaw for application in drug discovery.  相似文献   
95.
A triplet ground-state diradical molecule, bis(nitronyl nitroxide)-substituted diphenyldihydrophenazine ( 1 ..), that can be converted into a one-electron oxidized species, 1 … + , in the quartet ground state has been developed. Surprisingly, these species, 1 .. and 1 … + , can be used under ambient conditions because they are reasonably stable under aerobic conditions, even in solution. The temperature-dependent magnetic susceptibilities reveal that 1 .. and 1 … + are in the triplet state, with a weak exchange interaction (J1/kB = +3.1 K) and quartet ground state with a strong exchange interaction (J2/kB = +160 K), respectively. The interconversion between the neutral and one-electron oxidized species can be realized through electrochemical reactions. Significantly different absorption bands in the near-IR region newly appeared in the electronic spectra acquired during electrochemical oxidation/reduction.  相似文献   
96.
We re-evaluate our claim of a high diastereoselectivity in the self-relicating Diels–Alder reaction between maleimide 1 and fulvene 3 . It was shown that the system has a diastereoselectivity of 1.8:1 for NN-4 : NX-4 , which is contrary to the 16:1 ratio claimed by Dieckmann et al. The analysis of 1H NMR monitoring of the reaction revealed that both replicators show sigmoidal growth which is typical for auto-catalytic systems.  相似文献   
97.
The syntheses of novel amphiphilic 5,5′,6,6′-tetrachlorobenzimidacarbocyanine (TBC) dye derivatives with aminopropanediol head groups, which only differ in stereochemistry (chiral enantiomers, meso form and conformer), are reported. For the achiral meso form, a new synthetic route towards asymmetric cyanine dyes was established. All compounds form J aggregates in water, the optical properties of which were characterised by means of spectroscopic methods. The supramolecular structure of the aggregates is investigated by means of cryo-transmission electron microscopy, cryo-electron tomography and AFM, revealing extended sheet-like aggregates for chiral enantiomers and nanotubes for the mesomer, respectively, whereas the conformer forms predominately needle-like crystals. The experiments demonstrate that the aggregation behaviour of compounds can be controlled solely by head group stereochemistry, which in the case of enantiomers enables the formation of extended hydrogen-bond chains by the hydroxyl functionalities. In case of the achiral meso form, however, such chains turned out to be sterically excluded.  相似文献   
98.
Graphene oxide (GO) is a versatile platform with unique properties that have found broad applications in the biomedical field. Double functionalization is a key aspect in the design of multifunctional GO with combined imaging, targeting, and therapeutic properties. Compared to noncovalent functionalization, covalent strategies lead to GO conjugates with a higher stability in biological fluids. However, only a few double covalent functionalization approaches have been developed so far. The complexity of GO makes the derivatization of the oxygenated groups difficult to control. The combination of a nucleophilic epoxide ring opening with the derivatization of the hydroxyl groups through esterification or Williamson reaction was investigated. The conditions were selective and mild, thus preserving the structure of GO. Our strategy of double functionalization holds great potential for different applications in which the derivatization of GO with different molecules is needed, especially in the biomedical field.  相似文献   
99.
100.
Cancer stem cells (CSC) constitute a cell subpopulation in solid tumors that is responsible for resistance to conventional chemotherapy, metastasis and cancer relapse. The natural product Salinomycin can selectively target this cell niche by directly interacting with lysosomal iron, taking advantage of upregulated iron homeostasis in CSC. Here, inhibitors of the divalent metal transporter 1 (DMT1) have been identified that selectively target CSC by blocking lysosomal iron translocation. This leads to lysosomal iron accumulation, production of reactive oxygen species and cell death with features of ferroptosis. DMT1 inhibitors selectively target CSC in primary cancer cells and circulating tumor cells, demonstrating the physiological relevance of this strategy. Taken together, this opens up opportunities to tackle unmet needs in anti-cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号